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Abstract 0 Current drug levcl predictions in nonlinear pharmacokinetics are 
based on specific pharmacokinetic models in contrast to the model-independent 
(structureless), dose-linearity, and superposition principles used in linear 
pharmacokinetics. Such modcl-dependent methods may not provide reliable 
predictions due to their inherent nonuniqucness, computational complexity. 
and often unrealistic kinetic assumptions. Some novel model-independent 
methods for predicting the steady-state drug levels of extravascular, intra- 
venous bolus, and intravenous infusion adminislrations arc prescnted that 
should overcome such disadvantages. The methods only assume an autonomic 
nonlinear kinetic behavior, which implies that following an intravenous bolus 
administration the derivatives of the drug concentration-time profile at ar-  
bitrary drug levcls arc independent of the dose given. Such a kinetic behavior 
is found for any nonlinear pharmacokinetic system when the rate of change 
of the drug level following an intravenous bolus administrations depends only 
on thc drug level, i.e.. dC/dt = -4(c'), where 4 can be any function dependent 
only on C and time-invariant kinetic parameters. The basic approach presented 
represents a novel alternative which avoids the very difficult and often im- 
practical task of identifying and incorporating the numerous kinetic param- 
eters and processes responsible for the observed drug concentration data into 
il useful pharmacokinetic model. The focus in the kinetic analysis is instead 
on two much simpler processes: ( a )  fitting empirical functions to estimate the 
mean drug disposition behavior of thc subject or population and ( b )  testing 
the validity of the assumptions involved. 

Keyphrases 0 Pharmacokinetics-nonlinear, model independent. steady-state 
plasma drug-lcvel predictions, theory and mathematical models 0 Plasma 
drug levels-prediction at steady state. model-independent nonlinear phar- 
macokinetics. theory and mathematical models 

Steady-state plasma level predictions in linear pharmaco- 
kinetics are done by extrapolations using the dose-linearity and 
superposition principles or by using the convolution property 
of linear pharmacokinetics. The plasma level profiles used for 

the predictions are most commonly determined by fitting 
suitable model-independent equations, typically of an expo- 
nential type,  to available plasma level data. Such model-in- 
dependent methods cannot be used for drugs showing nonlinear 
pharmacokinetics because the superposition and dose-linearity 
principles do not apply. Consequently, drug level predictions 
in nonlinear pharmacokinetics have been based on model- 
dependent methods, which may not provide reliable predictions 
due to their inherent nonuniqueness, computational com- 
plexity, and often unrealistic model assumptions. A model- 
independent approach is presented which overcomes some of 
these disadvantages. 

THEORETICAL 

The proposed methodology applies to drugs showing what will be called 
au/onomic nonlinearpharmacokinetics; i.e., the drug-concentration profile 
resulting from an intravenous bolus dose adheres to the autonomic differential 
equation: 

where q stands for any function only dependent on the drug concentration C 
and time-invariant kinetic parameters. It  is assumed that q is such that the 
solution of Eq. I ,  C(r ) ,  is monotonically decreasing with time. Autonomic 
nonlinear pharmacokinetics is readily identified in a model-independent 
manner from "the horizontal superposition property" (Fig. I ). Different in-  
travenous bolus doses result in drug-concentration profiles with identical s l o p  

I The terminology "model-inde ndent" is used here to denote a general approach 
not b a d  on a specific structured Godel-dependent) kinetic analysis of the individual 
kinetic components of the pharmacokinetics. 
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Figure I-Illustration of the horizontal superposition property of autonomic 
nonlinear pharmacokinetics (A = B)t which is characterized by an intravenous 
bolus disposition behavior that follows to the general autonomic differential 
equation (Eq. I ) .  

at the same concentration levels. Thus, a horizontal shift of the curves will 
result in their exact superposition (Fig. I). For example, a parallel first-order 
and Michaelis-Menten elimination: 

will result in this behavior; so will any pharmacokinetic system incorporating 
nonlinear binding, excretion, metabolism, etc., as long as the kinetics can  be 
described in the general form of Eq. 1. However, due to the model-independent 
nature of the method proposed, there is no need to postulate a specific kinetic 
relationship. 

The most studied nonlinear drug, phenytoin, appears quite consistent to 
show autonomic disposition kinetics ( I ) .  The fall-off curves studied for 10 
subjects for a period of 4 consecutive days after different daily doses of 
phenytoin were discontinued seem to agree well with Eq. 1 (1). Other examples 
of the horizontal shift and the superposition concept include the pharmaco- 
kinetics of alcohol (2). 

SteedyState Prediction of Extravascular Dosing-In linear pharmacoki- 
netics, steady-state predictions can be made solely from a single dose, without 
using the information about the basic disposition of the drug provided by an 
intravenous drug administration. For example, if data from a single extra- 
vascular dose is well approximated by a sum of exponentials: 

BOLUS RESPONSE 

I T I M E  I T I M E  

Figure 2-Empirical evaluation of the disposition function q (Eq. I )  according 
to Eq. 9. The function C,,(t) denotes o suitable, monotonically decreasing 
function fitted to data from an intravenous bolus injection; C;. = dCi, 
W d t .  

Figure 3-Boundary value behavior of Eq. 14 (Eq. I3 simplified). An initial 
value for y(0) is chosen and improved by an iterative procedure until the 
corresponding y(T) value, obtained by numerical integration of Eq. 14. is the 
same as y(0). in which case the steady-state solution C,,(t) = y(tJ is ob- 
tained. 

where ZAi = 0, then the steady state can be predicted by: 

where T is the dosing interval. 
To make predictions in nonlinear pharmacokinetics in a model-independent 

way, it is, contrary to the linear case above, always necessary to have data 
available from a known intravenous administration to evaluate and properly 
account for the basic disposition behavior2. In the present case,data from an 
intravenous administration are used to empirically dctermine the functional 
behavior of the disposition function q (Eq. 1)  without knowing its functional 
(algebraic) form. This is done as follows. Let Civ(t) denote a suitable mono- 
tonically decreasing equation that fits the intravcnous bolus data well (e.g., 
by least-squares regression): 

c = C,"(t)  
then: 

dC 
dt 
- = dCiy(t)/dt  = Ci,(t) 

Since Civ(r) is monotonically decreasing its inverse C,'(C) exists, and can 
be found algebraically or numerically: 

t = C,i(C) (Eq. 7) 

Substituting Eq. 7 into Eq. 6 gives: 

-- dC - C,[C, ' (C)]  
dt 

Comparing Eqs. 8 and 1. it is seen that the disposition function q can be 
evaluated empirically from the function Ci.,(t) fitted to the intravenous bolus 
data: 

The simple evaluation of q ( x )  is illustrated graphically in Fig. 2. 
Consider now a single extravascular dosing. which results in some arbitrary 

systemic drug input f ( t )  (mass/timc). The differential equation relating to 
this input is: 

where v is a constant of dimension volume. Let C d i )  denote a suitable arbi- 
trary equation that fits the data from the extravascular dosing well, then Cf(t) 
should satisfy Eq. 10 to give: 

This may %em as a disadvantage in comparison with the model-dependent methods. 
where such predictions can be made without this additional information. However, such 
predictions will be highly inaccurate and unreliable because the disposition parameters 
in such models are allowed to "float" in an unconstrained way in the curve fitting. There 
is only hope for reasonable predictions if additional data from an intravenous adrninis- 
tration arc available. so the disposition parameters can be estimated without the con- 
founding interference from the absorption process. 
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F i  4-Empirical evaluation of the disposition function q (Eq. I )  according 
to Eq. 17. The function C,(t) denotes a suitable monotonically increasing 
function fitted to data from a constant-rate intravenous infusion; C;.,(t) = 
dCiu(t!/dt. 

Consider next the same extravascular dose given to the same subject a t  

I .  The drug disposition kinetics do not change (kinetic parameters of q are 

2. The drug absorption f ( t )  from each dose is reproducible. 
3. The drug is absorbed quickly enough in comparison with the dosing 

interval 7'. so that the absorption is completed before a new dose is given. The 
steady-state drug level profile will, under these assumptions, follow Eq. 10: 

regular dosing intervals, T. Let the following assumptions be made: 

time invariant). 

The drug absorption is assumed reproducible; thus, f ( t )  in Eq. 12 can be 
substituted with the expression in Eq. 1 I to give: 

Equation 13 is the final differential equation from which the steady-state 
drug level profile C&) can be calculated, when data from a single extra- 
vascular dose are available in addition to data from an intravenous bolus ad- 
ministration. Mathematically C&) is the solution, y(r ) ,  to a boundary value 
problem, which can be stated in its most simplified form as  follows. Find the 
particular solution y ( t )  of the differential equation: 

which satisfies the boundary condition: 

~ ( 0 )  = Y ( T )  

Equation 14, which is a simplified restatement of Eq. 13, is recognized as  a 
simple first-order differential equation which can be integrated numerically 
using a suitable algorithm>. The initial value y ( 0 )  of Eq. 14 is unknown. An 
initial estimate for y (0 )  is therefore required as a tentative solution which can 
be improved in  an iterative manner as follows. Integration of Eq. 14 (from 
t = OtotT)producesay(T)correspondingtothecurrenty(O). I fy (T)  >y(O),  
then y ( 0 )  is too small and must be increased in the next iteration. Similarly 
ify(T) < y(O), then y ( 0 )  should be decreased in the next iteration. They(0) 
- y ( T )  versus y ( 0 )  relationship is sketched in Fig. 3. The above so-called 
"shooting method" is a standard approach to solve nonlinear boundary value 
problems and is easily implemented on a computer. When the process con- 
verges, i.e., y (0 )  = y ( T ) ,  then the steady-state profile C,(r) = y ( t )  is given 
by the integration of Eq. 14 in the last iteration. The steady-state minimum 
and maximum levels are simple "by-products" of the process; i.e.. = y (0 )  
= y(T) and p i s  the maximum valueof y ( t )  reached in the last integration. 
The mean steady-state level can readily be calculated by integrating the y ( r )  

~~ 

A Runge-Kutta method (3) appears to bea suitable first choice because of its sim- 
plicity and economical evaluation. However, it must bc expected that  in some cases Eq. 
14 may be numerically unstable in the inte ration region (which varies during the 
boundary value iterations), in which case thekunge-Kutta method IS inaccurate. This 
inaccuracy c a n  readily be detected by comparing the inte ration results to those obtained 
using a substantially smaller (e.g.. I/ 10) step size. In sucf cases, it is necessary to swltch 
lo a more elaborate and accurate multistep predictor-corrector type algorithm (3). 
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Figwe 5-Hysteresis iteration method (E9s. 19-24) to predict peak and 
trough plasma levels in multiple intravenous bolus dosing. The steady-state 
drug level is reached at convergence when CF$ N C y  and C:!? N Grin. 
The function Ciu(t) denotes a suitable monotonically decreasing function 
fitted to data from an intravenous bolus administration, and T is the dosing 
period. 

points (e.g.. using a trapezoidal or log-trapezoidal rule) and dividing the area 
by the dosing interval (4): 

In summary, the steps required to predict the steady-state plasma levels 
are: 

1. Suitable arbitrary equations C,,( t )  and Cdr) are fitted todata from a 
single intravenous bolus and extravascular (e.g., oral) administration, re- 
spectively. 

2. The intravenous bolus response approximation, Ciy(t), and the absorption 
response approximation, Cdt) ,  are differentiated algebraically to define C&t)  
and C;<t). 

3. An initial estimate for y ( 0 )  is chosen (e.g., zero) and Eq. 14 (i.e.,  Eq. 
13) is integrated repeatedly in an iterative manner that improves they(0) value 
until it closely agrees with its corresponding y ( T )  value. When converged the 
steady-state drug level is given by the integrated equation, Cs(t) = y ( t ) .  

Not all drugs can be given by an intravenous bolus administration due to 
excessive side effects resulting from a too rapid systemic input. However, Eq. 
I 3  can still be applied if the drug in  question can be administered by a con- 
stant-rate intravenous infusion. In this case i t  can be shown (Appendix I )  that 
the disposition function q i n  Eq. 13 can be evaluated empirically according 
to: 

9 ( x )  = c:m - c:"[c;Yx)l (Eq. 17) 

where Ci, (contrary to Ci, in Eq. 8) is an arbitrary monotonically increasing 
function which provides a good fit to the data from the constant-rate drug 
infusion. The evaluation of q ( x )  in this case is illustrated graphically in Fig. 
4. 

A simple precaution must be taken in the initial (I  = 0) evaluation of q 
during the numerical integration of Eq. 14 (Eq. 13). An evaluation of q ( 0 )  
according to Eq. 9 may cause floating point overflow. For example, if a 
monotonically decreasing function Ci,(t) which asymptotically approaches 
zero for t - - has been chosen for the intravenous bolus approximation, then 
C,'(x) - - for x - 0 and C;'(O) is not defined. Thus, q(0)  cannot be 
evaluated according to Eq. 9 in this case. However, by setting q(0) = 0 (see 
Appendix I )  the problem is readily solved. Subsequent evaluations of q ( x )  
for x > 0 should not cause any numerical problems. 
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Figure 6-Solution conjiguration of the root-solving method (Eq.  30) to 
determine the steady-state peak and trough drug levels in intravenous bolw 
administration. The function Ciu(t) denotes a suitable. monotonically de- 
creasing function fitted to data from an intravenous bolus administration. 
and T is the dosing period. 

The evaluation of the inverse C,,(t) function (Eq. 7)  is done in a straight- 

c - Ci"(1) = 0 (Eq. 18) 

for given values of C, where C,,(t) is the function previously fitted to the data 
from the intravenous drug administration. Most scientific computer program 
libraries (5-7) and many books dealing with numerical analysis (3 ,8)  have 
general programs for finding the root of an arbitrary nonlinear equation, 
suitable for solving Eq. 18 in a routine manner. The same root-finding a l p  
rithm used to solve Eq. 18 can also be used in the "shooting method" to find 
the root of the boundary value function (Fig. 3). 

It is evident from Eq. 13 that in order to calculate the steady-state drug 
levels, the single-dose response function Cdr) only needs to be evaluated in 
the time interval t = 0 to I = T. This is a definite advantage, since the difficult 
problem of evaluating or extrapolating Cdt) beyond t = T is avoided. This 
would not be the case for a method that makes use of area under the curve 
(AUC) or total clearance. 

Steady-Stnte Prediction of Intravenous Bolus Dosing-The following 
derivation shows how the plasma level profile in any drug interval in multiple 
dosing can  be predicted from data from a single intravenous bolus dosing. Let 
Civ(t) denote an arbitrary monotonically decreasing function that provides 
a good fit to data from an intravenous bolus dose DO. If after the drug is 
eliminated the same subject is given an intravenous bolus dose D every T hours, 

forward manner by numerically finding the root, t ,  of the expression: 

BOLUS RESPONSE 
I 

C i V < t >  
t 

I- 
4 
K 
c 

Figure 7-Method to predict the steady-state drug level. C,. resulting from 
a consiant rate. R. drug infusion. The prediction is done according to Eq. 36 
on the basis of data from an intravenous bolus (Do) administration. The 
function C,,(t) denotes a suitable monotonically decreasing function fitted 
to the intravenous bolus data; Ci,(t) = dC,,(t)/dt. 

then the predicted initial concentration Pax will be DCi,(O)/Do if it is as- 
sumed that the autonomic nonlinear pharmacokinetics show a dose-linear 
initial behavior. This appears a reasonable assumption, since the nonlinearity 
is more likely to be due tosecretion and metabolic processes than to the initial 
distribution. 

will, due to the horizontal super- 
position property (Fig. I ) ,  follow the Ci,(t) curve. Thus, if point  A i n  Fig. 5 
is the point on the Ci,( t )  curve at the Cya level, then the first dosing profile 
is predicted by the curve segment AD which stretches over T hours (BC, Fig. 
5 ) .  When the second dose is given at point D, then the drug level rises to point 
E where ED = AB = (Fig. 5). Point E (v) is projected to point Fon 
the Civ(t) curve. Point F now becomes the new point replacing the original 
point A and the same procedure is iterated, i.e., GH = T hours, I = @". J 
= C;lax, etc. 

and c" ( n  = I ,  2, . . .) can quickly be 
predicted graphically according to this hysteresis iteration method. However, 
it is more accurate to evaluate these quantities on a computer according to 
the corresponding algorithm, specified by Eqs. 19-24: 

= DCi,(O)/Do (Es. 19) 

n = l  (Eq. 20) 

(Eq. 21) 

C?'" = Ci,(t) (Eq. 22) 

n = n + l  (Es. 23) 

The decline in  the drug level from 

The peak and trough levels 

t = G ' ( c )  + T 

The peak and trough levels are obtained sequentially when iterating Eqs. 
21-24 as indicated. The iterations will eventually converge such that c+: N 

and c', N c, in which case, by definition, the steady-state drug level 
profile has been reached. The mean steady-state drug level can  subsequently 
be calculated from: 

where I in Eq. 25 is the t value calculated in Eq. 21 at convergence. 
The steady-state drug levels can be calculated more directly without having 

to evaluate the inverse C J t )  function (Eq. 21) according to the following 
alternative method. The peak level at steady state is equal to the trough level 
plus the concentration increment ACD resulting from the dose injected at the 
end of the dosing interval: 

ca = CEn + ACD 0%. 26) 

As previously discussed, it is assumed that the pharmacokinetics show a 
dose-linear initial value behavior, so that ACD is proportional to the dose: 

ACD = D/V ( ~ q .  27) 

Equation 26 can, as illustrated in Fig. 6, be transformed into an equivalent 
expression involving Clv: 

C, , (X)  = C,,(X t T )  + ACD (Eq. 28) 

Y = DO/CdO) (Eq. 29) 

The proportionality term Y in Eq. 27 is given by: 

Combining Eqs. 27-29 yields the expression: 
D 
Do 

Ci,(X + T )  + - Ci"(0) - C,,(X) = 0 (Eq. 30) 

Solving Eq. 30 for X numerically using any suitable general purpose root- 
finding program will subsequently give the steady-state peak, trough, and 
mean drug levels: 

cy = C,"(X) ( ~ q .  31) 

The root-solving method (Eq. 30) is the most suitable because of its sim- 
plicity when the primary interest is to predict the steady-state quantities C,, 
Cr",  and c". However, if additionally it is desirable to evaluate how long 
(nT)  it will take to reach 90% of steady state, then the hysteresis iteration 
method (Eqs. 19-24) must be used. 

Steadyatate Prediction of Constant-Rate Infusion--The differential 
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equation describing the drug level profile resulting from a constant-rate ( R )  
intravenous infusion is given by Eq. I A  (see Appendix I). At steady state, 
dC/dr = 0, in which case Eqs. IA and 29 give: 

q(Css) = RCiv(O)/Do (Eq. 34) 

Let q - ’ ( x )  denote the inverse of the disposition function; then, the steady-state 
level is obtained by inversion of Eq. 3 4  

Css = q-’(RCiv(O)/Do) (Eq. 35) 

The problem is now to evaluate the q - ’ ( x )  function, which is best illustrated 
graphically as “q evaluated in reverse.” I f  - q ( x )  in Fig. 2 is set equal to 
-RCiv(0)/Do, then x will be q-l(RCiv(0)/Do),  i.e., x will be Cu (Eq. 35). 
From this it is seen (Fig. 2) that: 

Cu = Civ [C;,’(-RCiv(O)/Do)I (Eq. 36) 

where G‘( ) denotes the inverse of the <,( ) function. Equation 36 enables 
the steady-state drug level resulting from a constant-rate ( R )  drug infusion 
to be predicted in a model-independent manner when data from an intravenous 
bolus dose (DO) are available. The procedure is simply: 

I .  A suitable monotonically decreasing function Civ(t) is fitted (e.g.. by 
least-squares technique) to the intravenous bolus data to appropriately a p  
proximate the bolus response. 

2. The function is differentiated to give < , ( r ) .  
3. The predicted steady-state drug level is calculated according to Eq. 36. 

The evaluation procedure is graphically illustrated in Fig. 7. The evaluation 
of the inverse of <, ( I )  (Fig. 7) can be done readily in the same way as the 
inverse of CiV( / ) ,  as previously discussed (Eq. 18). 

DISCUSSION 

The above derivations and theoretical analysis have shown how steady-state 
predictions can be made for extravascular, intravenous bolus, and intravenous 
infusion administrations for drugs showing autonomic nonlinear pharmaco- 
kinetics. The methodology is certainly not a general solution to the very dif- 
ficult prediction problems in  nonlinear pharmacokinetics. However, the 
methodology does Seem appealing because it is model independent and requires 
few assumptions, which can be tested readily (e.g.. the horizontal superposition 
property, Fig. I ) .  It represents a novel alternative that appears less academic 
and more practical than the model-dependent methods with their often un- 
realistic kinetic assumptions and computational complexity. The methodology 
avoids the very difficult and often impractical task of identifying and incor- 
porating the numerous kinetic parameters and processes responsible for the 
observed drug concentration data into a useful mathematical model. The focus 
in the kinetic analysis is instead on two much simpler processes: ( a )  fitting 
empirical functions to drug concentration data to estimate the mean drug 
disposition behavior of the subject or population (i.e., the disposition function 
q )  and ( b )  testing the validity of the assumptions involved. 

The empirical sum of exponentials, which are fitted quite successfully in 
linear pharmacokinetics, apparently do not fit nonlinear pharmacokinetic data 
properly. Preliminary investigations were therefore carried out to identify a 
suitable type of function that could be used. It was found that the following 
function: 

(Eq. 37) 

produced very excellent fits to all typical Michaelis-Menten type intravenous 
bolus data investigated. Extensions of the numerator and denominator in  Eq. 
37 to include more exponential terms seem to hold some promise for other 
types of administrations and other types of nonlinearities. Alternatively, the 
use of least-squares splines may provide a more general and flexible approx- 
imation approach (9). Work is in progress to experimentally investigate the 
methodology proposed. 

APPENDIX I 

The differential equation describing the drug level profile resulting from 
a constant-rate ( R )  intravenous infusion is: 

Let C,,(t) denote an arbitrary monotonically increasing function which fit 
the data from a constant-rate infusion well; then, dC/dr can be determined 
according to Eq. 8 as previously described. By comparing Eqs. 1A and 8, it 
is seen that the disposition function q can  be estimated empirically from the 
function Civ(t) fitted to the intravenous infusion data according to: 

R 
q ( x )  = - V - C,(C,’(X) (Eq. 2 4  

I t  is evident from Eq. 1 that g(0) = 0 since dC/dt = 0 for C = 0 following an 
intravenous bolus administration. Thus, the volume term in Eq. 2A can be 
evaluated from the initial condition of Eq. 1A to give: 

V = R/d.,(O) (Eq. 3 N  
Inserting this expression for V into Eq. 2A givcs Eq. 17. 

APPENDIX 11: GLOSSARY 

Ai, a, 
C = Drug concentration 
C d t )  

ddr) = dCdr)/dr 
Civ(r) = Drug concentration-time profile resulting from an intravenous 

C’( ) = Inverse function of Civ(t) 
& t )  = dCiv(t)/dt 
G‘( ) , - Inverse function of C&) 
p,r - Peak and trough drug concentrations, respectively. in the nth 

= Constants (parameters) of an empirical equation (Eq. 3) 

= Drug concentration-time profile resulting from an arbitrary rate 
of systemic inputf(r) 

bolus dose or a constant-rate drug infusion (as indicated) 

( n  = 1,  
2,.  . .) 

dosing period in an intravenous bolus dosing regimen 

C,  = Steady-state drug concentration 
cu 
D 
Do 
f ( t )  

= Mean steady-state drug concentration 
= Intravenous bolus dose in multiple administration 
= Intravenous bolus dose in a single administration 
= Arbitrary rate of systemic drug input (mass/time) resulting from 

an extravascqlar dose 
= dC10)l + cdt) (Q. 14) 

K 
K,,, 
Pi 
q( ) 
q-I( ) 
R 
I = Time 
T = Dosing interval 

v m  

Y 

= Constant kinetic parameter (Eq. 2) 
= Michaelis-Menten parameter (Eq. 2) 
= Constants (parameters) of an empirical equation (Eq. 37) 
= Disposition function (Eq. I )  
= Inverse of the disposition function q 
= Constant rate of intravenous drug infusion 

U - Constant of dimension volume 
= Michaelis-Menten parameter (Eq. 2) 
= Variable defined by Eqs.  I3 and I4 
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